
Journal of Statistical Physics, Vol. 58, Nos. 3/4, 1990

The Impact of Large-Scale Computing
on Lattice Statistics

J. L. M a r t i n ~

Received July 14, 1989

The use of computers in theoretical physics has grown dramatically over the
years; this is as true in lattice statistical mechanics as anywhere. This paper is
concerned with one such aspect with which the name of C. Domb has been
closely associated: the enumeration of embeddings of connected structures in an
unlimited crystal lattice. An informal account is given of a recent computer
project originating in the combinatorial "shadow" method developed by
M.F. Sykes: the determination of the numbers and the properties of cluster
embeddings in crystal lattices. Sykes' approach has opened a way to information
which was earlier considered to be forever beyond reach. The principles are
given and the algorithms sketched; the detailed FORTRAN programming is not
given. The methods used have had to be specially deveIoped, but some have a
wider application for computer algebra when the computational task is massive.
Provided the computer is large enough and fast enough, impressive results may
be obtained in return for a reasonable effort. In practice, this implies that the
computer may have to be one of the largest and fastest, or else that it is
dedicated to the task.

KEY WORDS: Lattice statistics; cluster enumeration; combinatorics.

1. G R A P H I C A L EXPANSIONS

P o w e r series e x p a n s i o n s - - a n d indeed e x p a n s i o n s in m o r e genera l func t ions

- - a p p e a r f r equen t ly in physics. M o s t of ten they arise as the resul t o f a per -

t u r b a t i o n p r o c e d u r e : an en t i ty o f phys ica l in te res t is e x p a n d e d in p o w e r s of

a p a r a m e t e r wh ich is usua l ly t aken to be smal l ; a re la t ive ly shor t series m a y

be all tha t is needed. S o m e t i m e s , howeve r , a m u c h m o r e a m b i t i o u s goa l is

set, a goa l wi th which the n a m e of Prof. C. D o m b (see, e.g., ref. 1) has l o n g

been assoc ia ted : A p o w e r series is used to e s t i m a t e the l o c a t i o n a n d n a t u r e

of a singularity of a func t ion , such as a cr i t ica l p o i n t s ingu la r i ty of a ther-

i Wheatstone Physics Laboratory, King's College, Strand, London WC2R 2LS.

749

0022-4715/90/0200-0749506.00/0 �9 1990 Plenum Publishing Corporation

750 Martin

modynamic function; for this purpose it is essential that as many terms as
possible of the series should be available. This paper is concerned with the
development of lengthy series with critical point applications in mind.

In some cases the form of the successive terms in a perturbation series
becomes unmanageably complicated when written out in conventional
algebraic notation. This is particularly true for the example of quantum
electrodynamics, and Richard Feynman invented the shorthand of the
graphical expansion in which the contribution at each order is represented
as the sum of a collection of diagrams or graphs ; each graph is to be inter-
preted as a multiple integral according to well-defined rules. Mayer's
cluster integrals of a decade earlier may be given a similar representation.
Since that time it has become clear that graphical expansions are of value
for mastering the complexity that may arise in other contexts.

Such a context is lattice statistics: the statistical mechanics of a set of
systems located at the sites of one of the usual (infinite) crystal lattices,
with more or less local mutual interactions. Here Feynman "integrals" are
sums, as a consequence of the discreteness of the lattice structure;
moreover, if the range of the interaction between sites is strictly finite, the
sums are also strictly finite and the evaluation of each term of a perturba-
tion expansion becomes an enumeration problem. In most cases, the
enumeration problem reduces to a sequence of enumerations of the possible
embeddings of topological structures of specified construction in the crystal
lattice of interest. We shall call this a counting problem.

My own deep involvement with counting problems dates from the
early 1960s and arose from chance encounters with Prof. M. E. Fisher and
with Prof. C. Domb. At the time I was engaged in work of a quite different
nature, but I was intrigued by their statement to the effect that the essen-
tially combinatorial methods which were needed to make sensible progress
in any realistic counting problem were far too subtle to be enshrined in a
computer program. Of course, those were the days when computers were
generally regarded as number machines and not as the superbly versatile
devices of today. It took over a week, without benefit of high-level
language or operating system, to develop an elementary program to count
self-avoiding walks(2)'2; nowadays it can be done in 15 min. The com-
p u t e r - t h e National Physical Laboratory ACE--had roughly 800 words of
"fast" memory (the latency time was about 2 ! msec). How far we have come
in such short time!

The project really began to get under way with the arrival of the
English Electric KDF9 computer, with the capacity and speed of a small
modern micro. It surprises me in retrospect how much was achieved with

2 See ref. 3 for another example of very early computer enumeration.

Large-Scale Computing and Lattice Statistics 751

such meager resources. However, the theme of this paper is modern: an
account will be given of a typical large-scale computer onslaught on a
counting problem of massive proportions which has required the use of one
of the fastest and largest computers currently available, and the aim will be
to show how impressive the results can be, when the approach is right and
the tools are available.

2. C L U S T E R - C O U N T I N G A N D THE SYKES M E T H O D

There are many types of counting problem. One which is of great
interest for many applications in statistical physics is the enumeration of
clusters. A connected cluster is defined--for our purposes--as a set of sites
of our chosen lattice which, when taken with all lattice bonds connecting
pairs of these sites, yields a topologically connected structure. Here we
are concerned with the design of effective computer algorithms for the
enumeration of connected n-site clusters; as a particular instance, it
illustrates well the multifaceted approach which is needed for a challenge of
this kind.

It is indeed a challenge. The total number of n-site clusters on a lattice
of coordination # may be expected to grow roughly as /~n as n increases
(the worst case of usual interest is the fcc lattice, for which/~ = 12). Any
computer program which can make much impression in the presence of
exponential growth will need to be efficient, and will be expected to use
techniques for fast recovery of information.

Experience has shown that the best approach--when available--is one
which supplements brute-force enumeration with algebraic procedures
based on combinatorial theorems, usually expressed in terms of generating
functions. Theorems are hard to come by in general; however, Sykes (4) has
developed a combinatorial approach which replaces an impossibly large
enumeration by a very large (but possible) enumeration followed by a very
large (but possible) algebraic manipulation. In this way, the size of cluster
which can be enumerated is substantially increased. The growth of the
counting problem is still exponential--though with a smaller rat io--and
the presence of a natural cutoff therefore persists. The algebraic manipula-
tion grows relatively slowly at first, but the ultimate growth is faster than
any exponential and there is a hard upper limit to what can be achieved.

The Sykes method applies to bipartite lattices, and is the subject of the
rest of this paper.

The sites of a bipartite lattice fall into two disjoint exhaustive sets X
and Y such that the two sites at the ends of any bond of the lattice belong
one to each of the sets. (The plane square lattice with nearest neighbor
bonds is bipartite: think of the black and white squares of a chessboard.
The plane triangular lattice is not bipartite.)

752 Mart in

Strictly the Sykes method applies to any bipartite network. However,
the most useful outcome occurs when the network is symmetric against
interchange of the sets X and Y. The "usual" even regular crystal lattices
have this property. The lattice is taken to be of indefinite extent in all direc-
tions; thus, all cluster counts are to be taken as counts per site, or perhaps
counts per X-site, as convenient.

Define the enumerator F as the generating function

F(x, y) = ~ ~ xmynemn (l)
m rl

in which c,~ is the count of (m + n)-clusters involving exactly m (n) sites
from the set X (Y). Each such cluster C may be regarded as the union of
two partial clusters Cx and Cr , of m and n sites, respectively. The summa-
tions in F are partially broken down with regard to all the possibilities
for C x,

F(x, y) = ~, xm(Cx)E(y; Cx) (2)
C x

in which m(Cx) is the number of sites in Cx, the summation is over all Cx
which can give rise to a connected cluster C (the relevant Cx), and

E(y; Cx) = ~ y"c.(Cx) (3)
n

Here cn(Cx) is the total number of ways of adding n Y-sites to the partial
cluster Cx to yield a connected cluster C.

Sykes' achievement has been to obtain an algebraic route to the
enumerator E, given only the cluster Cx, based on a combinatorial argu-
ment reminiscent of "inclusion-exclusion." This suggests a computational
procedure in which the partial dusters C x are listed, the corresponding E
for each is evaluated, and the function F is progressively assembled.

Such a procedure would still be infeasible were it not for the fact that
in general several (sometimes very many) distinct partial clusters C:c lead
to the same enumerator E. Detailed knowledge of how the partial cluster
falls on the lattice is not at all necessary: what we need is the Structure of
the partial cluster--always with the initial capital to indicate its special
nature.

A typical four-point X-cluster on the square lattice is shown in Fig. 1,
along with its Structure; the latter consists of the four X-points (the Points)
taken with every neighboring Y-point (the Neighbors), ten in all. (In this
case, this same Structure arises from eight distinct X-clusters on the square
lattice, so that the condensation is considerable even at this early stage.)

Large-Scale Computing and Lattice Statistics 753

We need to codify Structures in some way. It is useful to use Sykes'
picturesque language: the Points of the Structure are to be thought of as
casting shadows on the Neighbors. A representative of a Structure is a list
of the ways in which the shadows fall on the Neighbors; for our example,
with the Points labeled as shown, the representative is the collection of ten
Shadows, one for each Neighbor,

A A C D D AB AB BC CD BCD

() [

()

[]B
]A ()

,)

[] c (

1) [(

(

]
D

Fig. 1.

(a)

[] P o i n t s

0 Ne ighbours

(b)
(a) A typical 4-Point X-cluster on the square lattice, (b) Its Structure. (~) Points,

(O) Neighbors.

754 Mar t i n

(See also Fig. 5.) When the coordination of every Point is the same (as is
true for the case of an infinite crystal lattice), those Neighbors shadowed
by only one Point may be safely omitted from the list: their Shadows can
be reconstituted from a knowledge of the others. Thus we are left with an
abbreviated representative

AB: 2 BC: I CD: I BCD: I

As they come to be computed, X-clusters are to be classified by Struc-
ture, not merely by representative. The labeling used is not of the essence,
and relabeling the Points of a Structure may yield a different representative
for that same Structure; there may therefore be as many m! representatives
for a single m-Point Structure. The challenging problem of how to
recognize the equivalence or otherwise of two different representatives must
at some point be faced.

The expression for F may now be rewritten as a sum over Structures,

F(x, y) = ~ xm(S)E(y; S) N(S) (4)
s

in which m(S) is the number of X-sites in a partial cluster with Structure
S, E(y; S) is the enumerator computed for this Structure, and N(S) is the
total number of partial clusters Cx with this Structure. So we are led to the
computational procedure:

(i) Generate all relevant partial X-clusters of a chosen fixed size m,
and "pigeonhole" each according to its Structure; in this way, we obtain
the enumeration N(S) for each possible Structure S.

(ii) For each Structure S which has appeared in the course of
process (i), evaluate E(y; S).

(iii) The above is to be done for m = 2 upward, as far as the con-
straints of computer time and storage will allow. (The case m = 1 is trivial.)

The enumerator F is then trivially assembled l-Eq. (4)], to the order
permitted by the extent of the computation. When F is known to be sym-
metric against interchange of x and y (as always in actual applications),
more of the series may be filled in by simple transcription. In the symmetric
case, if the maximum feasible value of m is M, then full information on
connected clusters of size 2M + 1 can be obtained in this way.

3. C O U N T I N G CLUSTERS ON A LATTICE

General-purpose computer programs for enumerating clusters on
networks have been with us for at least 20 years, and the techniques have

Large-Scale Computing and Lattice Statistics 755

steadily improved. A fairly formal account--perhaps slightly more involved
than it should have been--has been given elsewhere, (5) so we shall be
content here to outline the main principles with the help of a simple
illustration.

For this purpose let us consider the enumeration ofpolyominoes] 6~ By
analogy with a domino (which ought I suppose to be diomino in this con-
text), a polyomino is a plane connected arrangement of a finite number of
square tiles. (Two tiles are connected if they have one edge in common;
general connectivity follows by induction.) An example is shown in Fig. 2.
This figure also illustrates a crucial point: the polyomino is embedded in a
ha/J:plane with a step in the boundary. We take it to be evident that any
polyomino in general position may be uniquely translated so that one of its
tiles will occupy the position marked 1. The polyominoes will be counted
by a process of growth from a single seed-tile; demanding that the seed-tile
should be the unique tile at 1, and no other, cuts the total count by a factor
of precisely n for an n-point polyomino. This requirement is easily extended
to more general contexts, and can be trivially implemented in a computer
program.

The growth process is illustrated in Fig. 3 for the six polyominoes of
three tiles. The seed-tile is provided with a halo of those locations--marked
2 and 3--where further tiles may be placed so as to maintain the connec-
tedness. (There are two such locations, not four; remember the step of
Fig. 2.) Adopting location 2 for the next tile extends the halo with two
further locations, labeled 4 and 5--in no particular order. Clearly, loca-

Fig. 2. A correctly positioned embedding of a cluster in the square lattice half-plane.

822/58/3-4=23

756 Mart in

/ '
/

r-'7Y'U'l 9

c27

Fig. 3. The polyomino growth-tree.

tions 3, 4, and 5 are now available for the third tile; in this way we arrive
at the first three 3-polyominoes. (Of course, the halo of the final tile is an
irrelevance, and we ignore it.)

Now adopt location 3 for the second tile, extending the halo with
three locations, 4, 5, and 6. The halo now comprises four locations, but
using location 2 for the third tile will clearly result in a repetition; this loca-
tion is now prohibited for growth. If the new halo locations are labeled
consecutively in the natural way, as illustrated here, the rule is very simple:
the label of each new tile must be greater than the label of its predecessor.
The label sequences for the nine polyominoes in Fig. 3, in the order of
appearance, are

1 12 123 124 125 13 134 135 136

and these clearly satisfy the rule.
Generating clusters in this way is very efficient, since a large majority

of clusters have much in common with their immediate predecessors, and
minor changes are usual in passing from one to the next. The implementa-
tion of the process as a fast computer program is straightforward; the

Large-Scale Computing and Lattice Statistics 757

algorithm is naturally recursive, however, as may be expected from the
family-tree structure of Fig. 3, and does not fit too easily into a naturally
nonrecursive language like FORTRAN.

The present application calls for the enumeration of partial clusters on
the X-sublattice of an even lattice. The algorithm to be used is identical; the
only change is that the lattice vectors must be replaced with the vectors for
the next-neighbor lattice, obtained as the set of all differences of pairs of
vectors of the original lattice. Figure 4 illustrates this for the square lattice.

4. D E T E R M I N I N G THE S T R U C T U R E OF AN X-CLUSTER

As each X-cluster is revealed by the process of the last section, its
Structure--or rather, one of the representatives of its Structure--must be
worked out. It is not acceptable to work out the Structure from scratch for
every new cluster; this would entail much repetition of work already perfor-
med and would consequently be far too inefficient. However, because each
cluster is built up point by point, it is possible to assemble the Structure-
representative by incremental adjustments as the cluster itself grows.

Each new point of the X-cluster is a new Point of the Structure. Some
of its Neighbors must already be part of the Structure; their Shadows need
to be adjusted. Some of its Neighbors may be new to the Structure; their
Shadows will appear in the full representative for the first time, though we
shall avoid including them in the abbreviated representative until they are
influenced by at least two Points.

?

(a) ; (b)

Fig. 4. (a) Square lattice neighbor vectors, (b) The derived next-neighbor vectors.

758 Martin

When an X-cluster reaches full size, it is vitally important that the
representative should be very quickly available for archiving. This part of the
algorithm is visited once for every cluster generated, and the preparation
and archiving processes must be made as efficient as possible. To facilitate
speedy preparation, redundant information is retained as the representative
is built up. Archiving ("pigeonholing") is discussed in Section 5.

To fix ideas, we shall again refer to the example of Fig. 1. The cluster
generator will deliver the Points one by one, let us say in the order
A B C D. Building up the representative requires that the (relatively few)
Neighbors of each new Point be examined, and their new or altered
Shadows listed. Additionally--and redundantly-- the program maintains a
tableau of how many Shadows of each kind there are, and a further record
is kept of pointers to the tableau-entries which are relevant for inclusion in
the abbreviated representative. (Computer programmers will be familiar
with the need for such redundancy in applications of this kind.) By
reference to Table I and Fig. 5, it should be clear how the redundant infor-
mation can be efficiently adjusted as a cluster is built up, and how the
pointer record yields the desired final result. There is a caution: it is
possible for a nonzero entry in the tableau to fall back to zero at a later
stage in the generation of the cluster; the corresponding item in the record
must then be ignored when the completed representative comes to be
archived. Marks--shown by arrows--are kept to indicate how many
Neighbors must be erased when clusters come to be dismantled by the
cluster generator.

A program constructed as described so far will generate a stream of
Structures--more precisely, a stream of abbreviated representatives--one
for each X-cluster of interest. In a sense this solves the counting problem.
However, the result is utterly unsurveyable if left like this--the sequence of
representatives may be so colossal that immediate action must be taken to
condense it. Typically, a randomly selected representative will occur very
many times in the sequence, arising as it may from X-clusters with different
shapes and yet with the same Structure. It is necessary to "pigeonhole"

- - A

~ m

~-B!C--
B 7

BC--

__+
]--C , ~ -

D-] - - i -

Fig. 5. Adjustments to the Shadows as a typical X-cluster grows.

Large-Scale Computing and Lattice Statistics

Tablel. Building Upa Structure Representative

759

After Point A at position (0, 0):

Neighbors: (1, 01) (0, 1) (- 1 , 0) (0, - 1)
Shadows: A A A A
Nonzero tableau: (A) = 4
Pointer record: empty

After point B (1, 1):
Emark (21]

Neighbors: (1, 0) (0, 1) (- 1, 0) (0, - 1) (2, 1) (1, 2)
Shadows: AB AB A A B B

Nonzero tableau: (A) = 2 (B) = 2 (AB) = 2

Pointer record: AB

After Point C (2, 2):
,~ ~ [mark (3)]

Neighbors: (1,0) (0, 1) (- 1 , 0) (0, - 1) (2, 1) (I, 2) (3, 2) (2, 3)
Shadows: A B AB A A BC BC C C
Nonzero tableau: (A) = 2 (C) = 2 (AB) = 2 (BC) = 2

Pointer record: AB BC

After Point D (3, 1):
; ~ Lmark (4)]

Neighbors: (1,0) (0, 1) (- 1, 0) (0, - 1) (2, 1) (1, 2) (3, 2) (2, 3) (3, 0) (4, l)
Shadows: AB AB A A BC BCD C CD D D

Nonzero tableau: (A) = 2 (C)= ! (D) = 2 (AB)=2 (BC)= 1 (CD)= 1 (BCD)= 1

Pointer record: AB BC BCD CD

each new representative on arrival along with its identical predecessors; a
representative without an identical predecessor will call for the creation of
a further pigeonhole to accommodate it. When the process is complete, we
shall be left with a set of pigeonholes, each labeled with a representative
and containing the count of the appearances of that representative in the
sequence.

Even this is not enough. Two representatives which differ on account
only of a relabeling of the Points of the X-cluster belong to the same Struc-
ture; on this account, some Structures may possess thousands of distinct
representatives, and ambitious counting calls for a further condensation
(canonization: see Section 7). Canonization entails a permutation process of
some kind, and needs careful design. In any case, it is postponed as far as
feasible: the sequence is pigeonholed according to representative in the first
instance, and is condensed by canonization at the end, or whenever a
shortage of storage space makes this necessary.

760 Martin

5. THE P IGEONHOLE A L G O R I T H M

Cluster-counting entails the computer generation, without omission or
repetition, of the very large number of clusters of a specified set; frequently
the clusters are to be subclass~'ed according to some feature or other: in
the current application the relevant feature is the Structure.

Later we shall need to perform combinatoric feats by large-scale
algebraic manipulation. When two algebraic expressions are multiplied
together, the result in the first instance is a possibly very large number of
terms (the pairwise products) which will need to be reduced by summing
those terms which are identical apart from coefficient. This "collecting of
terms" is a process which is essentially identical to the subclassification of
the last paragraph. It is the bane of algebra, whether manual or automated.

It is perhaps true to say that none of this matters in everyday
circumstances. However, in the current application we expect to have to
deal with the generation of vast numbers of clusters, each one of which
needs to assigned unerringly and quickly to the correct Structure, followed
by the generation of vast numbers of terms as the combinatorial theorems
are applied. In such circumstances, it is essential to make the process of
subclassification (of either kind) as efficient as ingenuity will allow.

First, an informal example to illustrate the rules. Imagine that some
algebraic process or other delivers a stream of terms to be summed, such
a s

2x, -3y , 4xy, 5x, 3y, 0z,...

The partial sums are clearly

0; 2x; 2 x - 3 y ; 2 x - 3 y + 4 x y ; 7 x - 3 y + 4 x y ; 7x+4xy; 7x + 4xy;...

It is useful to recast this in a more general-purpose notation:

initially: []
(1) adding {x:2} gives [{ x : 2 }]
(2) adding {y: - 3 } gives [{x :2}{y : - 3 }]
(3) adding {xy : 4} gives [{ x : Z } { y : - 3 } { x y : 4 }]
(4) adding {x: 5} gives [{x :7}{y : - 3 } { x y : 4 }]
(5) adding {y: 3} gives [{x: 7}{xy : 4}]
(6) adding {z :0} has no effect
(7) . . .

In general, a shelf [. . .] is a set of pigeonholes {name :content}, where
the name may be thought of as a label attached to the pigeonhole and
content is what is currently to be found inside.

Large-Scale Comouting and Lattice Statistics 761

A shelf is built up from a stream of terms {name:content} . (The
notations for terms and for pigeonhole are similar, without ambiguity). The
rules for shelving each incoming term are straightforward:

(i) If the name of the new term does not match the name of any
pigeonhole, then create a new pigeonhole to accommodate the
term (steps 1, 2, 3 of the informal example).

(ii) If the name of the term matches the name of a pigeonhole, then
augment the content of that pigeonhole by the content of the
term (step 4).

(iia) If additionally the augmented content is now empty, then
abolish the pigeonhole (step 5).

(iii) Terms with empty content are to be discarded (step 6).

The informal example shows how pigeonhole is applied to algebra: the
name is the form of the monomial, and the content is the coefficient; the
she l f contains the expression as a whole. In the case of cluster-counting,
each new cluster will possess a Structure, and will generate a new term
{Structure: 1 }, in which the name is the Structure, and the content is 1 (to
count one new cluster, naturally). The shelf ultimately contains the detailed
enumeration of the clusters classified by Structure. [Of course, in this
instance rules (iia) and (iii) are not called upon.]

The triviality of the idea conceals the appalling inefficiencies which
may arise if the mass of information is badly handled. The nub of the dif-
ficulty is this: the typical collection of names which may arise--in either
type of application--is expected to be very irregular, and in general there
is no straightforward natural way of assigning the pigeonholes to the
elements of an array, unless the array is to be so sparsely used that even
the largest computers are far too small to hold it. Other styles of storage
must therefore be used. Hash-addressing (see, e.g., ref. 7) recommends itself
as a programming technique, and indeed it plays a crucial part in the algo-
rithm. However, with a virtual-memory computer, or in circumstances
where the information is so massive that disc storage has to be used, hash-
addressing can take one only so far, and supplementary procedures must
be invoked.

6. T H E P R O G R E S S OF A T E R M T H R O U G H T H E
S H E L V I N G A L G O R I T H M

Pigeonholing has at least two applications: counting Structures and
collecting terms in an algebraic expression. Both are relevant to the work
of this paper. A potentially troublesome algorithm ought never to be

762 Mart in

programmed more than once, and the routines described below have been
designed as a library package so as to be available in wider contexts, such
as general-purpose algebra.

The shelving of a term of the sequence proceeds in two phases, as
follows.

Phase One is designed to be as fast as possible. A region of memory
is set aside as a temporary receptacle for incoming terms. Well-understood
standard hash-address techniques are used: the name of the term is
"pseudorandomized" to yield a pointer into the receptacle, and the
following procedure is carried out:

[,] if the pointer locates the correct pigeonhole
then conflate the new term into this pigeonhole and quit

if the pointer locates no pigeonhole
then set up a fresh pigeonhole for the new term and quit

otherwise advance the pointer by one place and go back to [,]

This procedure determines whether the name of an incoming term is new
to the receptacle or not. If new, then a new pigeonhole is formed; otherwise
the term is absorbed into the already existing pigeonhole of the same name.
Clearly such a process deals adequately with rules (i) and (ii); application
of the other rules is deferred. With care, the method may be made very fast.

Phase One would be enough to cope with manipulations of moderate
extent. However, it may be necessary to restrict the size of the receptacle
for one reason or another. The physical memory size of the computer may
be too small to accept all the information, which will need to spill out to
the disc or tape, or the page-faulting of a virtual-memory computer may be
destroy the advantages of speed if the receptacle is made too large. In addi-
tion, whatever the size of the receptacle, it may happen that "conflicts,"
when the pointer fails to locate the correct pigeonhole quickly enough, may
become unacceptably frequent. For one reason or another, therefore, it
may be necessary to decant the contents of the receptacle, and to start
again.

The act of decanting introduces the information to Phase Two. The
pigeonholes in the receptacle are removed and presented one by one as
terms in their own right to a sorting algorithm (the sort is carried out on
pigeonhole-name); any empty pigeonholes are filtered out at this stage. (It
is here that canonization of the representatives is performed; at this late
stage it needs to be done far less frequently, but it cannot be postponed
further.) Terms with the same name become immediate neighbors as a
result of the sort, and the routine is extended to conflate such neighbors
into a single te rm--and also, if the resulting content is empty, to discard

Large-Scale Computing and Lattice Statistics 763

it altogether. The sole reason for the ordering is to make this conflation
possible; it would be difficult to find a more efficient method.

When all items have been decanted, Phase One is resumed with an
empty receptacle and the cycle repeated until the sequence of terms comes
to an end. The shelf is then available as an ordered list.

The sorting method is an " n l o g n " sort-merge algorithm in an
ingenious variant due to A.L.J . Wells (unpublished). It is in no way
inferior in efficiency to the more familiar algorithms, but it has the
extremely useful feature of being incremental: most of the sorting is carried
out as the items arrive and the resulting conflations relieve what might
otherwise be acute pressure on computer memory. (The embodiment as a
computer program incorporates a "garbage collector" to organize the
storage released by conflation. Additionally, much use is made of pointers
for the sake of time efficiency. This is not the place to do more than merely
mention these matters.)

7. C A N O N I Z A T I O N

When X-clusters are being enumerated, the end product is to be a shelf
each of whose pigeonholes yields one of the coefficients N(S) in Eq. (4);
indeed, N(S) will be represented by the pigeonhole {p(S) : N} in the style
of Section 5, in which p(S) is the canonical representative (now to be
defined) of the Structure S. The entire sum of Eq. (4) will then be covered
by the shelf as a whole.

The representative of a Structure is a collection of Shadows, p in all,
say. Its formulation relies on some labeling or other of the m Points of the
Structure; this labeling is not of the essence, and two representatives which
differ only in that the labelings which produce them are different must be
treated as identical. This leads to a problem of identification which may
become acute: the total number of representatives associated with one
Structure may be as great as m! p !. (The first factor is associated with the
labeling, the second with the order in which the Shadows are listed. It is
the first factor which causes the real problems.)

The natural way to meet this challenge is to designate just one of the
many representatives of a Structure S as the canonical representative p(S)
and to provide an algorithm for transforming any representative into its
canonical counterpart. A thoroughly impracticable approach would be to
form lists of the representatives, with the canonical version at the head
of each. A better approach is to imagine such lists, each arranged in
order according to some prearranged rule, and to apply the relevant
permutations to the incoming representative, noting any version which is--

764 Martin

according to the rule--"earlier" than any previous one; in this way, the
unique representative at the head of the imagined list is straightforwardly
identified.

This works well up to a point. However, the aim is to design routines
which will work for Structures with up to 12 Points or thereabouts; since
the number of Point-labelings is then 12! =479001600, any way to reduce
the labor must be welcomed. Sometimes the Structure itself will provide an
answer; in the example of Fig. 1, list the numbers of Neighbors of each
Point with different "intensity" of Shadow:

Shadow intensi ty 1 2 3 4 ...

Po in t A 2 2
B 3 1

C 1 2 1

D 2 1 1

Clearly, the immediate environments of the Points are all different in this
case: so map the environments on to the integers in some way, place the
integers in order of magnitude, and thus establish a canonical labeling of
the Points. The canonical representative is the representative which results
from the canonical labeling.

At the other extreme, there are Structures whose every Point has the
same immediate environment: certain kinds of closed loop, for example.
The above process will then do nothing toward canonization, and gener-
ating all permutations of the labels may be prohibitively expensive. It may
be worth giving these Structures some alternative treatment. Loops, for
example, are easily recognized. Other "difficult" Structures occur rarely,
and it may be simplest to raise a flag when they appear, and to accept their
uncanonized representative as adequate.

Most Structures lie between the extremes: the Points are classified into
sets according to environment, and labeling the Points in order of environ-
ment yields a partial canonization only. However, all that is now required
is to apply only those permutations which do not disturb the already
established sequence of environments, and this task is usually orders of
magnitude faster than the full permutation.

A transparent method of working through all n!.permutations of n
objects goes as follows. Imagine that the objects are located in boxes
1, 2, 3 The symbol (12) means "exchange the objects currently in boxes 1
and 2"; similarly for the others, The starting configuration is Permuta-
tion 0.

Large-Scale Computing and Lattice Statistics 765

The rule to obtain Permutation s from Permutation s-- 1 is:

if s is odd, perform (12);
if s is even, but not divisible by 6, then (23);
if s is divisible by 6 but not by 24, then (12) (34);
if s is divisible by 24 but not by 120, then (23) (45);
if s is divisible by 120 but not by 720, then (12) (34) (56);...

The general form should be clear. This rule takes us up to and including
Permutation (n ! - 1) without omissions or repetitions. (Note that all the
exchanges are made between adjacent boxes. It is simple to arrange the
internal computer representation so that the objects which we desire to per-
mute are adjacent binary digits in the components of the representative of
a Structure. If the above permutation rules are used, then the process will
require the exchange of adjacent digits, and it transpires that the passage
from one permutation to the next can be achieved by a single FORTRAN
statement.)

Moreover, suppose that examining the environments of the Points of
some given Structure has shown, for example, that we need to permute the
contents of locations 123 and of 45 and of 67 separately, in all combina-
tions. Here is the analogous recipe:

s not divisible by Permutation

2 (12)
6 (23)

12 (23) (45)
24 (23) (45) (67)

s is to run from 1 to 23. A brief routine to generate the recipe appropriate
to the given environments is easily prepared.

Thus, canonizing a representative goes in three steps: (i) the Points are
ordered according to environment; (ii) if this does not yet give an unam-
biguous result, the appropriate permutation recipe is generated; (iii)the
permutations are applied, and the "earliest" representative according to the
rule is adopted as canonical.

8. THE C O N N E C T E D E N U M E R A T O R E (y ; S)

The evaluation of the enumerator E(y; S) for a given Structure S
is achieved by a process akin to "inclusion-exclusion"; we now turn to
consider the precise rules as developed by M. F. Sykes.

766 Mart in

The complete enumerator is to be obtained as a sum of contributions

E(y; S)= ~ conE(y; S, ~)
TC

over all possible partitions 7z of the Points of S; c% is the weight for the
partition ~. Each contribution E(y; S, 7~) is a product of certain poly-
nomials, in which each Neighbor gives rise to one factor.

As an example, we examine the expression E(y; S, AB.CD), where S
is the Structure shown in Fig. 1. The essence of the technique is to find the
partitions induced by AB.CD on the components of the (full) representative
R of the Structure; thus

R: A(2) C D(2) AB(2) BC CD BCD
AB. CD: A C D AB B.C CD B.CD

The rule of formation of the induced partitions should be evident. As it
happens, the labels AB... of the Points have now done their work, and it
is sufficient henceforth to record only the "shape" of the induced partition.
It is convenient to use a "decimal" notation, exemplified by

ABCD. EFG. HIJ. KL. MN. OP. Q. R. S has specifier [1233]

I 1 1 2 I 3 I 3 1

(The units place records the number of subsets with 1 member, the tens
place those with 2, and so on.) The above scheme abbreviates to

R: A(2) C D(2) AB(2) BC CD BCD
AB.CD [1] [1] [1] [10] [2] [10] [11]

This is of course only one row of the complete table, which has a row for
every possible partition of the labeled Points: see Table II. The weights
depend only on the number of subsets in re, and generally take the values
_+k!.

Without ambiguity, we may regard the specifiers as standing for
certain properly chosen auxiliary polynomials. This table then prescribes
that, for our example,

E(y; S, AB. CD)= [112.[1] . [112.[1012.[2] . [10] . [11]

= [1] s [1 0 1 3 1 2] [1 1]

The enumerator E(y; S) is in this case the weighted sum of 15 such
contributions.

Large-Scale Computing and Lattice Statistics

Table II. The Specifier Table for the Structure of Figure lb

787

A(2) C D(2) AB(2) BC CD BCD

~=1
ABCD [1] I l l [1] [-10] [101 [lO] [1001

A . B C D I l l I l l [1] [2] [10] [10] [100]
B . A C D [1] [1] [1] [21 [21 [10] [11]
C.ABD [11 El] [1] [10] [2] [2] [111
D . A B C [1] [1] [1] [10] [10] [2] [11]
AB. CD [11 [11 [1] [10] [2] [10] [l l]
A C . B D [1] [1] [1] [2] [2] [2] [11]
A D . B C [1] [1] [1] [2] [101 [2] [1l]

w=2
A B . C . D [1] [1] [1] [10] [2] [21 [31
A C , B . D [1] [1] [1] [2] [2] [2] [3]
A D . B . C [1] [1] [13 [2] [21 [21 [3]
B C . A . D [1] [1] [1] [2] [101 [2] [l l]
B D . A . C [1] [1] [1] [2] [2] [21 [11]
CD.A.B [11 [11 [11 [2] [2] [10] [11]

A . B . C . D [1] [11 [11 [2] [2] [2] [3]

Different applications will call for different auxiliary polynomials--and
sometimes for different weights. The mere enumeration of clusters calls for

[1] = [10] = [100] = [1000] 1 + y, = f , say
all other auxiliary polynomials = 1

We may read off from the table the 15 properly weighted terms:

E(y; S)=fl~ 1 . (f a+f6+fT+fS +f8 +f5 +f6)

+ 2.(f7 +f5 +f5 +f6 +j,5 + f 6) _ 6.(f5)

= (1 + y)5 (2y2 + 7y3 + 5y4 + yS)

The first factor takes care of the five Neighbors which receive only one
shadow; obviously these may be included or omitted in every combina-
t i o n - t h e y cannot affect the connectedness of the result. The remaining
factor correctly enumerates the number of ways the remaining five
Neighbors may be chosen to yield a connected cluster. The 2 + 7 +
5 + 1 = 15 ways of doing this are shown in Fig. 6.

7 6 8 M a r t i n

2~/2
[] [3
I r

o-M-o-El [3-o-[3
I I
EJ [3-o

7y ,s
o-D

o-S-o-D

�9

D-o o-S-o
II I I

o-~-o-Mj ?--N D ~-o-[3

[N-o

~ - o o - ~ - o
I I i I

~ - - o - ~ ~ []
I I

~-o N--o

[]
I

o--E3--o--D
I I
[3--0

o-[3--o 0--[3--o
i b I i I I

?--D--o--~ ~-o-P

[] Q--o

5y 4
O--[3
I I

O -- [3 -- O -41
I

N--O

~--O O--~--O
II I

O--S-o--Q O--~ []
II II
~--O ~-O

o--D--o
I i I

E - - O

~,o

Fig. 6. The connected possibilities as enumerated by E(y; S) for the X-cluster of Fig. h

The generation of Structures has been discussed in Sections 3 and 4,
and their proper pigeonholing to yield the numbers N (S) in Sections 5-7.
The work of this section has completed the last link in the chain by
providing a method for determining the connected enumerator E (y ; S)

when the Structure S is known. The final assembly of the full enumerator
F [Eq. (4)] is now trivial.

9 . T H E S C A L E O F T H E P R O B L E M

It is important to understand that the table of specifiers for a typical
Structure may be very large. The columns are not very numerous in
general, but the number of rows is the total number of partitions of the
labeled Points; we have seen that for four Points there are 15 rows. In
general the numbers of labeled partitions, and therefore of rows, are given
in Table III; they grow faster than any exponential, but not as rapidly as
m !. [Incidentally, there is a generating function,

am + 1 zm e z 1ceZ

,~ = 0 rn [

Large-Scale Comput ing and Lattice Statistics 769

Table III. Number of Rows in a Typical
Specif ier Table

Number of Points (m) Number of rows (am)

1 1
2 2
3 5
4 15
5 52
6 203
7 877
8 4140
9 21147

10 115975
11 678570
12 4213597

and a rather curious explicit formula,

am=el~ (p + l) ']
p=0 P !

The growth in number of the partition specifiers (for n shadows) is much
more modest:

n: 1 2 3 4 5 6 7 8
Specifiers: 1 2 3 5 7 11 15 22

(66 specifiers--and therefore 66 auxiliary polynomials--in all.) For our
applications there has been no need to go beyond n = 8: the most difficult
case is the body-centered cubic lattice (of coordination q = 8), on which
Neighbors cannot be shadowed by more than 8 Points.

For the sake of efficiency, when the number m of Points becomes
large, a reference table of likely specifiers is generated as a preliminary act.
There is of course one row for each labeled partition of the m Points. The
number of columns is fixed by both m and the coordination q of the lattice
of interest; see Table 1V for the more usual values. The savings are useful
for the smaller values of q, where larger values of m may well be attempted
anyway. At the higher reaches the computations need to be segmented,
even on the largest computers, on account of the voracious demand for
storage. Segmentation according to rows of different weight co is perhaps
the neatest approach.

770 Mart in

Table IV. Number of Columns in a Typical Specifier Table

Number of columns for coordination q
Number of
Points (m) q = 3 q = 4 ... q = 6 --. 8 .-. q = ov

1 1 1 1 t 1
2 3 3 3 3 3
3 7 7 7 7 7
4 14 15 15 15 15
5 25 30 31 31 31
6 41 56 63 63 63
7 63 98 126 127 127
8 92 162 246 255 255
9 129 255 465 510 511

10 175 385 847 1012 1023
11 231 561 1485 1980 2047
12 298 793 2509 3796 4095

In the face of their mountainous numbers, it is futile to suppose
that the necessary partitions can be compiled by hand, and a partition
generator is needed. The version used in this project runs as follows.

Write amr for the number of partitions of m labeled objects into r
subsets. Then

amr = a m l ,r 1 -}- r a m 1,r

since the ruth object may either form a new subset on its own, or else be
added to one of the r already existing subsets. As is usual, the existence of
such a relation suggests a procedure for the generation of the partitions
themselves.

Consider the partition A.BD. C (note the standardized arrangement: The
items of each subset are put in alphabetic order, and then the subsets
themselves are put into alphabetic order). This partition is the parent of
./'our offspring in which the new object E has four different fates:

A . B D . C ~ AE .BD.C , A .BDE.C , A .BD.CE, A . B D . C . E
1232 12321 12322 12323 12324

Under each partition is written a particularly convenient code, defined
recursively for each offspring by the addition of a new digit to the code of
the parent. (Actually, the new digit evidently specifies where the new arrival
is to be found when the new partition is written in the standard arrange-
ment.)

Large-Scale Computing and Lattice Statistics 771

The procedure for generating all the partitions is written as a proce-
dure for generating all the corresponding codes. The rules of formation are:

(i) The partition A by itself has the code 1.

(ii) Let the maximum digit in any code be r. Then there are r + I off-
spring to that code, obtained by appending the digits 1, 2 r + 1
in turn.

The generation of these codes for up to four objects according to these
rules, along with the corresponding partitions, is shown in Table V. The
apparently confused order in the final column is not a disadvantage.

10. IS IT W O R T H THE TROUBLE?

This is not the place to record the results of the project; they will be
given when they come to be analyzed in other papers. However, there is no
doubt that the approach described here can lead to extraordinary savings
in computer time. There has to be a tradeoff, of course; the programming
is very much more complicated (after all, a brute-force approach would
require nothing more than Section 3 of this paper) and the demands on
immediate-access computer memory are much heavier. Is it worth it?

As a simple example, consider the diamond lattice, which was used as
a pilot to check the correctness of the routines. There exist 14436726016

Table V. Generating the Partitions of Four Distinguishable Objects

1 A 11 AB 111 ABC 1111 ABCD

t 1 t2 ABC.D

111 AB.C 1121 ABD. C
1122 AB. CD
1123 AB.C.D

12 A,B 121 AC.B

122 A. BC

123 A . B , C

1211 ACD.B
1212 AC.BD
1213 AC. B , D

1221 AD.BC
1222 A. BCD
1223 A.BC.D

1231 A D . B . C
1232 A. BD. C
1233 A.B. CD
1234 A . B , C . D

822/58,,3-4-24

772 Mart in

connected clusters of 17 sites on this lattice; to count them directly on a fast
computer would take a few hours. The method of this paper requires first
that 8-Point clusters on the X-lattice (a face-centered-cubic lattice, as it
happens) must be generated. There are 6849415 of these; merely to count
them would take a few seconds only, but the fact that they need to be
pigeonholed according to Structure increases the required time substantially.
Our program on the University of London CRAY X-MP took 787 sec for
this task; a total of 2529 distinct realizable Structures was found. Deter-
mining the corresponding specifier polynomial (by way of a table with
4140 rows) took a further 413 sec in all; this stage of the work had to be
segmented on account of the inordinate demand for computer memory.
The specifier polynomial was found to comprise 8380 terms in 74 variables
(66 specifiers [. . .] and 8 weights co: the weights are kept as variables at
this stage since different choices of weight may be used to solve different
problems).

It remains to substitute auxiliary polynomials for the specifiers and the
weights, appropriate to whichever of the several possible problems is to be
solved. The most elementary substitution has been given in Section 8; it
yields the numbers cs,n of Eq. (1) for all n. This took a further 13 sec to
complete.

Thus, to carry through the work at the 8-Point level required just over
20 min of CRAY cpu time. The same procedure is naturally needed for the
lower m-Point levels, m = 2 7, and calls for another minute or so. In this
way, the required count is obtained by

C17 = C8,9 -~- C7, 10 -{- C6, 11 -]- C5, 12 "q- C4, 13 + C3, 14 + C2, 15 + C1, 16

= 11025316374 + 3185908084

+ 223244454 + 2256717 + 387 + 0 + 0 + 0

= 14436726016

in far less time than is needed for the direct count. Worthwhile savings are
thus feasible, particularly on the more challenging even lattices such as the
body-centered-cubic.

Recently Styer et al. (s) have examined bond percolation in two dimen-
sions. Part of this work involved enumerating by computer all N-bond
clusters (N = 1 16), pigeonholed by the number of perimeter bonds; the
count took 27 epu hr on the CRAY X-MP computer at the Ohio Com-
puter Center. Such a count must include at least some 17-site connected
clusters, and will be included in the information gained from a count of up
to 8-Point X-clusters within the present context. This work has very
recently been carried out. At the 8-Point level there are 3502 Structures, the

Large-Scale Computing and Lattice Statistics 773

specifier polynomial has 12271 terms, and the substitution of the
appropriate auxiliary polynomials, which are much more involved in this
case, (9/leads to a polynomial in three variables with 365 terms. (The final
substitution generated 3706420 algebraic terms to be pigeonholed. With
1 Mword of memory dedicated to storing the pigeonholes, the garbage
collector had to be invoked 22 times. These facts give a good feel for the
kind of demands the method can be expected to make on memory resour-
ces.) The final outcome contains all the information needed to derive
Styer's results, and much more. The cpu time ran to rather over 1000 cpu
sec, also on a CRAY X-MP. Plans are in hand to extend the count to
9-Point X-clusters, and thus to obtain extensive information on 19-site
clusters on the square lattice.

It is difficult to know what improvement should be claimed in this
instance: so much depends on exactly what information is being gathered,
and indeed on programming style. In qualitative terms, however, it is safe
to say that the partnership of a fast computer and an understanding of
combinatorics is likely to be unbeatable.

More can be done. For example, it is known that for certain iden-
tifiable Structures the specifier polynomial factorizes, and that each factor
may be separately calculated by the now-familiar techniques with a further
saving in time. It is likely that incorporating this fact in the procedures will
serve as some defense against the unbridled growth of the numbers in
Table III. How this is to be implemented is under consideration.

It is now 40 years since the appearance of Prof. Domb's early work on
the pencil-and-paper methods for counting lattice embeddings. Over that
time the power of the available tools has increased in ways which were far
beyond the imaginations of all but perhaps the most outrageous of science
fiction writers. Much has been accomplished as a result, but it would be a
mistake to believe that the speed of a modern computer can now relieve us
of the need to think. Remember this, and we shall be by no means at the
end of the road.

A C K N O W L E D G M E N T S

May I record here the pleasure and enjoyment that has been mine
over the years as a result of being able to collaborate with other workers
in this field, particularly with my colleagues of the Statistical Physics
Group at King's College, London. I like a computing challenge; they have
provided me with plenty!

774 Martin

R E F E R E N C E S

1. C. Domb and M. S. Green, eds., Phase Transitions and Critical Phenomena, Vol. 3
(Academic Press, 1974).

2. J. L. Martin, Proc. Camb. Philos. Soc. 58:92-101 (1962).
3. S. Rushbrooke and J. Eve, J. Chem. Phys. 31:1333 (1959).
4. M. F. Sykes, J. Phys. A 19:1007-1025, 1027-1032, 2425-2429, 2431-2437 (1986).
5. J. L. Martin, in Phase Transitions and Critical Phenomena, Vol. 3, C. Domb and M.S.

Green, eds., (Academic Press, 1974), pp. 97 112.
6. W. F. Lunnon, in Computers in Number Theory, A. O. L. Atkin and B.J. Birch, eds.

(Academic Press, 1971); D. H. Redelmeier, Discrete Math. 36:191 203 (1981).
7. D. E. Knuth, The Art o(Computer Programming, Vol. 3 (Addison-Wesley, 1973),

pp, 506-542.
8. D. F. Styer, M. D. Edwards, and E. A. Andrews, J. Phys. A 21:Ll153-1156 (1988).
9. M. F. Sykes, J. Phys. A 19:2425-2429 (1986); Eqs. (3.2)-(3.5).

